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The project data set comprised 880 molecules tested on 11 biological assays: 1 activity criteria (phenotypic assay), 6 off-target activity

(selectivity criteria), 4 DMPK criteria (microsomal stability and permeability assays). The data set was sparse with 10-70% missing data

rates. No molecule in the initial data set was meeting simultaneously the 11 objectives of the project: 6 active molecules were

meeting a maximum of 9 objectives.

Multi-Parameter Optimization (MPO) is a major challenge in New Chemical Entity (NCE) drug discovery projects, and the inability to identify molecules meeting the Target Product Profile (TPP) in lead optimization (LO) is an important cause of NCE project

failure or delay. Several ligand- and structure-based de novo design methods have been published over the past decades, some of which have proved useful for multi-objective optimization (MPO) (ref 1-7). However, there is still need for improvement to better

address the chemical feasibility of generated compounds as well as increasing the explored chemical space while tackling the MPO challenge. Recently, promising results have been reported for deep learning generative models applied to de novo molecular

design (ref 8), but until now, to our knowledge, no report has been made of the value of this new technology for addressing MPO in an actual drug discovery project. Our objective in this study was to evaluate the potential of a ligand-based de novo design

technology using deep learning generative models to accelerate the discovery of an optimized lead compound meeting the TPP LO criteria.

Can AI help to design optimal compounds matching simultaneously all the objectives of the LO project?

Introduction

Initial data distribution❶

QSAR models development

All data were binned according to the project TPP (1=In, 0=Out). QSAR models

were developed for all 11 objectives, using logistic regression models or

ensemble models on morganFP with a random split (80/20). Probability

thresholds to predict 1 were selected in cross validation on the train set to

maximize precision to the detriment of accuracy and recall, in order to reduce

the risk of false positives.

Activity Pred 0 Pred 1

Measured 0 22 0

Measured 1 23 3

Precision 100%

Recall 12%

5-HT2A Pred 0 Pred 1

Measured 0 31 0

Measured 1 4 1

Precision 100%

Recall 20%

5-HT2B Pred 0 Pred 1

Measured 0 21 3

Measured 1 3 6

Precision 67%

Recall 67%

a1 Pred 0 Pred 1

Measured 0 38 0

Measured 1 7 1

Precision 100%

Recall 13%

NaV 1.2 Pred 0 Pred 1

Measured 0 19 2

Measured 1 8 12

Precision 86%

Recall 60%

D1 Pred 0 Pred 1

Measured 0 21 0

Measured 1 1 14

Precision 100%

Recall 93%

RLM Pred 0 Pred 1

Measured 0 75 2

Measured 1 24 46

Precision 96%

Recall 66%

HLM Pred 0 Pred 1

Measured 0 105 3

Measured 1 30 9

Precision 75%

Recall 23%

Caco-2 FAbs Pred 0 Pred 1

Measured 0 69 0

Measured 1 65 7

Precision 100%

Recall 10%

Caco-2 Efflux Pred 0 Pred 1

Measured 0 34 2

Measured 1 48 40

Precision 95%

Recall 45%

hERG Pred 0 Pred 1

Measured 0 63 1

Measured 1 17 6

Precision 86%

Recall 26%

On average, the QSAR predictive models performed well with high

precision in the test sets, except for 5-HT2B (precision 67%).

Interpretability of the results was difficult for Activity, Alpha and 5-HT2A

due to the small number of positive compounds in the test set.

Iktos molecule generator❸
Iktos molecule generator, a proprietary algorithm

using deep learning LSTM generative models with

reinforcement learning inspired by similar

architecture (ref 9), was then used to design virtual

molecules fulfilling all 11 objectives according to a

proprietary multi-objective fitness function built

from the predictive QSAR models, as described in

the adjacent figure. In the reinforcement learning

setting, the molecule generator is the policy and

the multi-objective function is the reward. It is

optimised using a policy gradient algorithm

adjusting the weights of the LSTM towards regions

of high rewards in the chemical space.

Reinforcement 

learning

1) Molecules are
generated (95% of
SMILES validity)

11 Independent 

QSAR models 

2) molecules are scored by
the multi-objective fitness
function built from the 11
QSAR predictive models

3) the weights of the model are adjusted
to maximize the probability of
generating molecules similar to those
maximizing the global score using a
policy gradient algorithm.

Results❹
150 virtual compounds predicted to meet all 11 objectives

simultaneously were proposed by Iktos algorithm. 20 compounds

were selected based on synthetic accessibility, structural diversity,

and score confidence. For 9 molecules the synthesis failed so 11

compounds were finally tested.

For most of the objectives, the new molecules outperformed the

molecules of the initial dataset, including the 50 most recent ones.

The average number of objectives hit was 9.5 for the new

molecules vs. 6.4 previously. Hit rate was >90% for all selectivity

and permeability targets and 65% for activity. Metabolic Stability

however was decreased with a 55% hit rate. More importantly, in

the 11 new compounds, 1 met simultaneously all 11 objectives

of the project, and 2 were good on 10/11 objectives, and just

below the required threshold, within the margin of error of the

assay, on the missed objective.

Analysis❺

Presence of a 1,2‐benzoxazole moiety which

appears in 61% of cases in the whole dataset

and in 78% of the last 50 molecules.

Active 9/11 Active 9/11 Active 10/11

Active 8/11

Presence of a pyrano[3,4‐c]pyrazole moiety which appears 5 

times in the initial dataset

Presence of a pyrano[4,3‐c]pyrazole

moiety which appears 5 times in the 

initial dataset

Presence of a 2‐(1,2‐oxazol‐5‐yl)pyridine moiety 

which appears 13 times in the initial dataset

Borderline* 10/11 Inactive 8/11

First introduction of an 

aliphatic group in that 

position

Presence of a

[1,2,3]triazolo[1,5‐a]pyri

dine moiety which

appears 6 times in the

initial dataset.

Presence of a [1,2,3]triazolo[4,3‐c][1,4]oxazine moiety 

which appears 4 times in the initial dataset

Borderline* 10/11 Inactive 8/11 Active 9/11 Inactive 9/11

Presence of a thieno[2,3‐d]pyrimidine moiety 

which was absent from the initial dataset

Using a large dataset of 880 molecules, Iktos DL-based de novo design algorithm was able to identify 150 virtual compounds meeting the project TPP in silico. The hit rate of the 11 compounds tested was impressive compared to the previous molecules and

3 of those 11 compounds were found to be "in" the TPP (2 being slightly below the limit on 1 objective out of 11). The algorithm was able to suggest functional groups that were rare or absent in the initial dataset and that proved very beneficial for the MPO.

To our knowledge, this is the first report of a successful application of deep learning for de novo design to solve an MPO issue in an actual drug discovery project, moreover on a large number of objectives. This is a demonstration of the potential of this

technology to bring substantial improvements to medicinal chemistry. The use of such approach in the earlier phases (hit to lead, early LO) is under investigation. Improvement needs have been identified and are being addressed regarding increasing the

synthetic accessibility and diversity of the suggested structures.

Conclusion❻
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Objectives Activity 5-HT2A 5-HT2B a1 D1 NaV 1.2 hERG RLM HLM
Caco-2 
FAbs

Caco-2 
Efflux

Concentration 30 nM 10 µM 10 µM 10 µM 10 µM 10 µM 10 µM - - - -

Filled % 29% 28% 26% 33% 28% 30% 59% 90% 90% 87% 77%

Blueprint Threshold ≥30% ≤50% ≤50% ≤50% ≤50% ≤50% ≤30% ≥50% ≥50% ≥90% ≤15

In blueprint rate 59% 29% 35% 33% 53% 68% 45% 49% 35% 61% 80%

Best compound 194 20 18 1 4 0 19 82 63 89 26 Best compound in the initial dataset

9 objectives out of 11 (Active 9/11)

48 molecules out of 880 had been

measured against all the objectives. In

average those molecules reached 6.4

objectives.

Iktos molecule 

generator algorithm
B. Visualization of the convergence of the model towards

molecules maximizing the individual scores on each QSAR

models (x axis: nb of iterations; y axis: average score of the

molecules generated on each QSAR model)
A. Illustration of the reinforcement taking place 

at each iteration of the algorithm

Initial molecules

AI-designed molecules

project chronology (synthesis and test)

As shown below, the 11 compounds generated by the AI algorithm displayed functional groups that were rare in the initial dataset

or that were never tried before in the project, showing the ability to identify favorable modifications with few data and to propose

successful innovations, including introducing an aliphatic group at a place where only aromatic moieties had been tried before.

Objectives Activity 5-HT2A 5-HT2B a1 D1 NaV 1.2 hERG RLM HLM
Caco-2 
FAbs

Caco-2 
Efflux

Best AI designed

compound
83 7 18 7 -9 2 3 57 75 97 7

Best AI designed compound, active and meeting

11 objectives out of 11 (Active 11/11)

The 11 AI designed

molecules were measured

against all the objectives. In

average those molecules

were found to reach 9.5/11

objectives in average.

* In the margin error of the Activity assay

The AI algorithm was able to identify the only

permeable compounds within the 6,7-dihydro-

4H-triazolo[5,1-c][1,4]oxazine series while

maintaining safety and stability

The AI algorithm was able to identify

compounds with reduced efflux within the

pyridoisoxazole series while maintaining

safety and stability

Most of the 11

compounds generated

by the AI algorithm

were situated in a

favorable chemical

space regarding

Molecular Weight,

Property Forecast

Index (Ref 10) and the

fraction of sp3 carbon

atoms.
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